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Abstract Projections of vegetation distribution that incorporate the transient responses of
vegetation to climate change are likely to be more efficacious than those that assume an
equilibrium between climate and vegetation. We examine the non-equilibrium dynamics of a
temperate forest region under historic and projected future climate change using the dynamic
ecosystem model LPJ-GUESS. We parameterized LPJ-GUESS for the New England region
of the United Sates utilizing eight forest cover types that comprise the regionally dominant
species. We developed a set of climate data at a monthly-step and a 30-arc second spatial
resolution to run the model. These datasets consist of past climate observations for the period
1901–2006 and three general circulation model projections for the period 2007–2099. Our
baseline (1971–2000) simulation reproduces the distribution of forest types in our study
region as compared to the National Land Cover Data 2001 (Kappa statistic00.54). Under
historic and nine future climate change scenarios, maple-beech-basswood, oaks and aspen-
birch were modeled to move upslope at an estimated rate of 0.2, 0.3 and 0.5 myr−1 from 1901 to
2006, and continued this trend at an accelerated rate of around 0.5, 0.9 and 1.7 myr−1 from 2007
to 2099. Spruce-fir and white pine-cedar were modeled to contract to mountain ranges and
cooler regions of our study region under projected future climate change scenarios. By the end
of the 21st century, 60% ofNew England is projected to be dominated by oaks relative to 21% at
the beginning of the 21st century, while northern New England is modeled to be dominated by
aspen-birch. In mid and central New England, maple-beech-basswood, yellow birch-elm and
hickories co-occur and form novel species associations. In addition to warming-induced
northward and upslope shifts, climate change causes more complex changes in our simulations,
such as reversed conversions between forest types that currently share similar bioclimatic
ranges. These results underline the importance of considering community interactions and
transient dynamics in modeling studies of climate change impacts on forest ecosystems.
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1 Introduction

Climate is an important determinant of species distributions (Davis and Shaw 2001;
Parmesan and Yohe 2003). Climatic change associated with the onset of the Younger
Dryas (YD) cold interval at the end of the last glaciation shifted vegetation across north-
eastern America toward cold-tolerant species like spruce; cold-tolerant species were then
replaced by temperate white pine, beech and oaks as climate warmed at the end of the YD
(Oswald et al. 2009). Climate was likely a cause of the mid-Holocene decline of eastern
hemlock in temperate forests of the northeastern U.S. (Foster et al. 2006). Recent climate
change has been associated with upslope shifts of northern hardwood forests along montane
elevation gradients over the period 1964–2004 (Beckage et al. 2008). The influence of recent
and past climate on forest distribution suggests that future climate change will result in
continued change in the composition and distribution of forests in the northeastern U.S. (e.g.
Evans and Perschel 2009).

Predicting the ecological effects of climate change is increasingly important as the rate
and magnitude of anthropogenic perturbation of the climate system increases. Projections of
the responses of forests to climate change can anticipate species shifts and their ecological
effects (Farnsworth and Ogurcak 2006). The composition and distribution of New England
forests also has global implications because of their significance in sequestrating atmospheric
CO2 (Hooker and Compton 2003) thereby mitigating climate change (Evans and Perschel
2009). Past projections of forest response to climate change in the New England region have
been based on statistical or process based models that assume vegetation is in equilibrium with
climate. The climate envelope-based studies (e.g. Iverson and Prasad 2001; McKenny et al.
2007) have assumed that vegetation and climate are in equilibrium and have ignored the
impacts of climate and atmospheric CO2 concentration on the physiological and biogeochemical
dynamics of vegetation. Equilibrium process model-based studies (e.g. Tang and Beckage 2010)
consider the physiological and biogeochemical dynamics of vegetation but still assume vegeta-
tion and climate are in equilibrium. In addition, both climate-envelope and equilibrium vegeta-
tion models ignore not only the process of ecological succession in terrestrial vegetation but also
the non-linear effects of climate change on the trajectory of vegetation change (Bachelet et al.
2001). As a result, they are unable to simulate the transient dynamics of terrestrial vegetation
under climate change, such as the interannual variations of plant growth and the succession of
plants through time (Prentice and Solomon 1990; Sitch et al. 2003; Tang and Bartlein 2008).

Vegetation distribution is often not in equilibrium with climate condition (Woodward and
Beerling 1997). Dynamic vegetation models (DVMs) have been developed to account for the
non-equilibrium nature of vegetation by including the lags and feedbacks resulting from tree life
histories and their interactions at the population and community levels. Some DVMs with
greater mechanistic detail may consider the differential birth, growth and death of individual
trees as a function of species’ response to climatic factors, light and nutrients (e.g. LPJ-GUESS,
Smith et al. 2001). The resulting models are therefore able to simulate the transient changes in
vegetation composition and distribution (Tang and Bartlein 2008), such as the drought-induced
species mortality (Bachelet et al. 2001). In addition, DVMs simulate the physiological and
biogeochemical processes of plants, such as photosynthesis and the carbon flux between
different compartments (e.g. leaf, stem, root and litter). They are able to model the growth of
plants over space and time, on scales ranging from days to centuries and from local to global
(Woodward and Lomas 2004). DVMs often explicitly consider the differential physiological
traits of plants, such as shade- and drought-tolerance and fire resistance. Depending on the study
system (region) and model, this may enable researchers to differentiate major species at the
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regional or local scale, which may be generalized as the same plant functional type in an
equilibrium model (Koca et al. 2006).

In this study, we applied a dynamic ecosystem model, LPJ-GUESS (Smith et al. 2001), to
examine the potential transient dynamics of forest composition and distribution in New
England under historical (1901–2006) and future (2007–2099) projected climate change. We
used relatively high-resolution climate data at 30-arc second spatial resolution to run LPJ-
GUESS. Historical climate data in monthly-step were derived from PRISM (Daly et al.
2000, 2002) and CRU TS 3.0 (Mitchell and Jones 2005) data sets. We developed nine future
climate change scenarios (CCS) based on three GCM runs, i.e. HadCM3 (Gordon et al.
2000; Pope et al. 2000), CGCM3.1 (Kim et al. 2002, 2003) and ECHAM5 (Jungclaus et al.
2005), driven by three IPCC (International Panel on Climate Change) SRES (Special Report
on Emission Scenarios) B1, A1B and A2 storylines that bracket the range of likely future
climate trajectories. We believe that our analysis provides for an improved understanding on
the potential consequences of global climate change on forest composition and distribution
in New England, compared with earlier studies that have relied on equilibrial assumptions.

2 Methods and materials

2.1 The study region

New England is located in the northeastern corner of the United States and consists of six
states, i.e., Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, and Connecticut
(Fig. 1a). The landforms in New England are relatively flat in coastal areas where elevation
is in general less than 200 m. In contrast, the interior areas are dominated by mountains with
varying elevation from 200 to 1,834 m. Climate patterns in New England also vary
throughout the region. Northern New England is characterized by a humid continental short

Fig. 1 a The topography and geographic regions in New England. ‘NH’ and ‘RI’ correspond to New
Hampshire and Rhode Island. b The modeled spatial distribution of eight forest cover types in New England
for the baseline period 1971–2000, respectively
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summer climate, with mild summers and cold winters. Southern New England and the
coastal areas have a humid continental long summer climate, with warm summers and cold
winters. Historically, New England forests were strongly impacted by human-related activities
(Foster et al. 2002; Parshall et al. 2003). Nevertheless, the current distribution of forest trees in
New England reflects, to a large degree, climatic gradients across the region: Balsam fir (Abies
balsamea), black spruce (Picea mariana) and red spruce (Picea rubens), for example, currently
predominate in regions associated with cooler climates such as at higher elevations and in
northern New England, while white oak (Quercus alba), black oak (Quercus velutina) and
pignut hickory (Carya glabra) are associated with warmer conditions found at lower elevations
and in southern New England.

2.2 Model, PFT definition and parameterization

We used LPJ-GUESS (Smith et al. 2001; Sitch et al. 2003; Hickler et al. 2004), a generalized
regional dynamic ecosystem model, to predict the potential transient dynamics of forest in
New England under historical and future projected climate change. LPJ-GUESS combines
mechanistic representations of plant physiological and biogeochemical processes with
demographic gap models, such as sapling establishment, species competition and mortality.
LPJ-GUESS does not simulate seed dispersal, but does simulate the succession and the
growth of individual trees on a number of replicate patches, with each patch approximating
in size the area of influence of a large, mature tree on its neighbors. In LPJ-GUESS,
individual tree height and diameter growth are regulated by carbon allocation, conversion
of sapwood to heartwood and a set of prescribed allometric relationships (Smith et al. 2001;
Sitch et al. 2003). Individual trees with negative increments of carbon in different compart-
ments (e.g. leaves) are removed from the simulation.

LPJ-GUESS accounts for multiple driving factors that affect plant phenological, physiological
and biogeochemical processes, such as the effects of temperature on the kinetics of plant’s
photosynthesis and respiration, and atmospheric CO2 concentration on vegetation growth,
biomass and soil carbon (Smith et al. 2001; Hickler et al. 2004). In addition, it considers the
effects of climate-mediated environmental disturbances like fires and drought on species com-
position and dynamics (e.g. mortality). In general, LPJ-GUESS simulates vegetation at a location
as a mixture of plant functional types (PFT), which can represent either individual species or
groups of species, determined jointly by their bioclimatic limits, their competition for below-
ground resources and light, the climate-related dynamics (e.g. drought-induced damage), and the
state of carbon allocation. The model simulates the leaf area index (LAI) of each PFT as well as
the carbon flux between the soil, vegetation and atmosphere. LPJ-GUESS has been applied in
and validated by a number of studies at both regional and local scales (e.g. Smith et al. 2001;
Hickler et al. 2004; Morales et al. 2005; Koca et al. 2006). Details of the LPJ-GUESS model are
available in Smith et al. (2001).

We classified dominant forest tree species in New England into eight PFTs on the basis of
morphological, phenological, shade- and drought-tolerance traits (Table 1). These PFTs
encompass most though not all widespread species that are currently found in New
England and form eight forest cover types that are commonly considered in studies of
forests in this region (e.g. Iverson and Prasad 2001). We considered the current geographic
ranges of species when defining multispecies PFTs so that included species in each category
have similar distributions. Given the coexistence of multiple PFTs in a grid cell, we defined
the dominant PFT in a modeled grid cell as the PFT that has the highest LAI value. In
addition, we excluded the areas in our simulations that are currently dominated by human
land-use activities (e.g. urban areas and agriculture lands).
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Estimates of parameters for each PFT were based on published literature (e.g. Hickler et
al. 2004; Withington et al. 2006). Parameters that describe shade-tolerance, drought-
tolerance and fire resistance were derived from the USDA (United States Department of
Agriculture) Conservation Plant Characteristic (CPC) database (http://plants.usda.gov/
about_characteristics.html). The USDA CPC database ranks the relative tolerance of plant
species to drought on a four-point scale along with the relative ability of the plants to
resprout, regrow or re-establish from seed after a fire. We quantified these scales (e.g. high,
medium, low and none for drought tolerance) referring to published literature (e.g. Hickler et
al. 2004) (Table 2). Details of quantification are available in Appendix S1 in Supplementary
Material. We combined CRU TS 3.0 long-term mean climatology of temperature and Little’s
vector format of species distribution data for North America (http://esp.cr.usgs.gov/data/
atlas/little/) to define the potential bioclimatic limits of the eight PFTs under study. We
specifically used 2% and 98% percentiles of temperature and growing degree days from
CRU TS 3.0 to define the lower and upper bioclimatic limits of the PFTs (Table 2).

Table 1 Tree species that were included in the eight plant functional types (PFT) used for simulating forests
in New England

Plant functional types Forest cover types Species composition

Scientific name Common name

1. Boreal shade tolerant needleleaf
evergreen tree

Spruce-fir Abies balsamea Balsam fir

Picea mariana Black spruce

Picea rubens Red spruce

2. Northern intermediate shade tolerant
needleleaf evergreen tree

Pine-spruce-cedar Pinus strobus White pine

Picea abies Norway spruce

Thuja occidentalis White cedar

3. Boreal shade intolerant needleleaf
evergreen tree

Red-jack pine Pinus banksiana Jack pine

Pinus resinosa Red pine

4. Northern shade tolerant broadleaf
deciduous tree

Maple-beech-
basswood

Acer saccharum Sugar maple

Fagus grandifolia American beech

Tilia americana American
basswood

5. Temperate intermediate shade
tolerant broadleaf deciduous tree

Oaks Quercus alba White oak

Quercus prinus Chestnut oak

Quercus velutina Black oak

6. Northern intermediate shade
tolerant broadleaf deciduous tree

Birch-elm Betula
alleghaniensis

Yellow birch

Ulmus americana American elm

7. Temperate shade intolerant
broadleaf deciduous tree

Hickories Carya glabra Pignut hickory

Carya cordiformis Bitternut hickory

Carya tomentosa Mockernut hickory

Carya ovata Shagbark hickory

8. Boreal shade intolerant broadleaf
deciduous tree

Aspen-birch Populus tremuloides Quaking aspen

Betula papyrifera Paper birch

Some abundant or important (of economic value) species, such as eastern hemlock and black cherry, are not
considered in simulation because their ranges are distinct from those of other species belonging to the same
PFT
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2.3 Climate, soil and CO2 data

We used temperature (°C), precipitation (mm), percent sunshine (%) and wet day frequency
(days) all in monthly time-steps for the period 1901–2099 to run LPJ-GUESS. Monthly
temperature and precipitation for the period 1901–2006 were derived from PRISM 2.5-arc
second data sets (Daly et al. 2000, 2002) while monthly percent sunshine andwet day frequency
for this period were downscaled from the CRU TS 3.0 data sets at 0.5° (Mitchell and Jones
2005). Our future data for the four climate variables for the period 2007–2099 were derived
from HadCM3, CGCM3.1 and ECHAM5 model runs driven by each of three IPCC SRES B1,
A1B and A2 storylines. These nine scenarios describe future potential economic and societal
trajectories that result in different levels of greenhouse gas emissions and resultant climate
change (IPCC 2007). We interpolated all monthly climate data into 30-arc second spatial
resolution by targeting the SRTM 30-arc second elevation data (Farr and Kobrick 2000;
Rosen et al. 2000) (Appendix S2) using the approach described in Tang and Beckage (2010).
Compared to the baseline (1971–2000) condition, New England is projected to be warmer and
wetter under most scenarios in the end of the 21st century (Appendix S3).

Our soil texture data (Appendix S2) for running LPJ-GUESS were derived from the
USDA Soil Survey Geographic (SSURGO) Database, available from http://soils.usda.gov/
survey/geography/ssurgo/. The SSURGO data provide information about the proportionate
content of particles (sand, silt and clay) in a soil. We defined soil texture in New England
into coarse (clay <18% and sand >65%), medium (clay <35% and sand <65% or sand<082
and clay >18%) and fine (clay>35%) classes following the FAO rules (FAO 1991). Annual
atmospheric CO2 concentration data for the historic period 1901–2006 and for the future
period 2007–2009 under SRES-B1, -A1B and -A2 storylines were taken from Schlesinger
and Malyshev (2001). Projected future atmospheric CO2 concentration in a given year is the
highest for the A2 storyline while the lowest for the B1 storyline.

Table 2 Parameters used to define the eight PFTs used in our LPJ-GUESS simulations

Forest cover types ShT1 DrT2 FiR3 SLA4 Lon5 LeL6 Tmin7 Tmax8 gdd59

(m2 kgC−1) (years) (years) (°C) (°C) (>5°C)

1. Spruce-fir Tolerant 0.23 0.08 13.1 300 5 −23.0 −5.6 607

2. White pine-cedar Intermediate 0.10 0.05 12.0 250 3 −18.7 1.7 1,092

3. Red-jack pine Intolerant 0.20 0.09 11.0 180 2.5 −18.5 −7.1 840

4. Maple-beech-
basswood

Tolerant 0.30 0.14 43.4 350 0.6 −14.2 6.1 1,375

5. Oaks Intermediate 0.28 0.14 33.0 400 0.6 −9.3 8.1 1,890

6. Yellow birch-elm Intermediate 0.30 0.05 41.3 250 0.6 −16.7 0.4 1,075

7. Hickories Intolerant 0.37 0.13 32.0 250 0.6 −7.9 10.6 1,950

8. Aspen-birch Intolerant 0.20 0.16 30.3 200 0.6 −24.8 −5.4 480

ShT1 – Shade tolerance; DrT2 – drought tolerance used to calculate plant’s water uptake from soil, which in
turn limits sapling establishment; FiR3 – Fire resistance used to calculate tree mortality associated with fire
probability and biomass destroyed by fire; SLA4 – specific leaf area; Lon5 – Longevity; LeL6 – Leaf
longevity; Tmin7 – minimum temperature in coldest month for sapling establishment; Tmax8 – maximum
temperature in warmest month for sapling establishment; gdd59 – growing degree days above 5°C for sapling
establishment. The quantification of drought tolerance, fire resistance, specific leaf area, tree longevity and
leaf longevity for each PFT approximates the mean of these parameters for all species that consists of this PFT
(see Appendix S1 for details)
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2.4 Modeling protocol and validation

The LPJ-GUESS simulations for New England start from “bare ground” with 10 replicate
patches per grid cell for 1199 simulation years (1000 spin-up period plus 199 simulation years).
The 1,000 years for ‘spin up’ were required for the vegetation and soil and litter pools to reach
equilibriumwith the long-term climate (e.g. Koca et al. 2006), or for vegetation biomass to reach
a steady state in the existence of disturbances (e.g. fire), at the initial point of the simulation. The
monthly climate data for the period 1901–1930 was detrended using a locally weighted scatter-
plot smoothing algorithm (Cleveland 1979) prior to being used for the model spin-up; this
insured there was no temporal trend in the climate data used for model spin up. After this
equilibrium was reached in the ‘spin up’ period, the model was allowed to advance in a non-
equilibrial manner, simulating the potential transient dynamics of vegetation under historical
climate data (for 1901–2006) and future GCM projections (for 2007–2099), respectively.

We used the 2001 National Land Cover Data (NLCD 2001) (Kelly and White 1993;
Vogelmann et al. 1998a, b) to validate modeled vegetation for New England. NLCD 2001
distinguishes three forest cover types, i.e. evergreen, deciduous and mixed forests for the
United States based on foliar vegetative cover characteristics. We reclassified our modeled
PFTs into categories that correspond to the three forest cover types in NLCD 2001 for
evaluation of model performance. Specifically, we averaged the 30-year (1971–2000) mean
of LAI at each grid cell for each PFT and then calculated the sum of average LAI for
evergreen trees and deciduous trees. For comparison to the three forest classes in NLCD
2001, we defined (i) areas where the summed LAI of evergreen trees accounted for 75% or
more of the total LAI as evergreen forest, (ii) areas where the summed LAI of deciduous
trees accounted for 75% or more of the total LAI as deciduous forest, and (iii) areas where
the summed LAI of neither evergreen nor deciduous trees accounted for as much as 75% of
the total LAI as mixed forest. These reclassified forest types were compared to the three
forest types in NLCD 2001 for model validation.

We used the Kappa statistic (Cohen 1960) and Fuzzy Kappa (Hagen-Zanker et al., 2005)
to measure the goodness of fit between the three reclassified forest types from the model
simulations and the corresponding classes in NLCD 2001. Details of how Kappa and Fuzzy
Kappa statistics were calculated are described in Tang et al. (2009). Both Kappa and Fuzzy
Kappa followed the same rating system: values greater than 0.75 indicate very good-to-
excellent agreement, values between 0.40 and 0.75 indicate fair-to-good agreement, and
values of 0.40 or less indicate poor agreement (Monserud and Leemans 1992; Landis and
Koch 1977). In addition, simulations in which one input (e.g. temperature or precipitation)
climate variable was allowed to vary while others were held at the baseline (1971–2000)
mean conditions and simulations using the same HadCM3 A1B climate scenario but with
SRES-B1 (lower) and -A1B (higher) CO2 atmospheric concentrations were performed
respectively to examine the respective effects of temperature, precipitation and elevated
CO2 on potential forest dynamics in New England.

We compared the simulated future changes in forest distribution between the period 2071–
2099 and the period 1961–1990 with those simulated using an equilibrium vegetation model in
a previous study (Tang and Beckage 2010). For comparison, we combined our modeled eight
forest cover types into three categories, i.e., boreal conifer forest, northern deciduous hard-
woods and mixed oak-hickory forest, to match those from the equilibrium simulation. We
calculated themean of latitude, elevation and area from all cells for a given forest type in the two
periods being compared. The differences in latitude or elevation or ratios in areal extent between
the baseline and future periods are compared with their counterparts from the equilibrium
simulation.
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3 Results

3.1 Model validation

Our modeled distributions of eight PFTs (e.g., eight forest types) are broadly consistent with
general climate-determinant vegetation distribution in New England (e.g. Fuller et al. 1998)
(Fig. 1b). For example, the spruce-fir is modeled to predominate in northern New England and at
high elevations, such as in the Green Mountains of Vermont and the White Mountains of New
Hampshire (Fig. 1a, b). In these areas, monthly mean temperature is comparatively lower than in
other regions across New England (Appendix S2). The modeled deciduous forests, like maple-
beech-basswood, yellow birch-elm and aspen-birch, which are major components of northern
deciduous hardwoods in New England, are mainly distributed in mid or central cooler uplands
(Fig. 1a,b). The oaks, the dominant species in mixed oak and hickories forest, are modeled to
dominate in southern New England and at low elevations such as in southern Maine (Fig. 1a, b).

The modeled overall distributions of the three aggregated forest types (i.e., the eight PFTs
combined into evergreen, deciduous and mixed forest) agree well with the NLCD 2001 data
(Fig. 2a, b). The model’s overall Kappa and Fuzzy Kappa statistics of 0.54 indicate that LPJ-
GUESS does well in simulating these three forests in New England. For example, both
model simulations and NLCD 2001 show that southeastern and northwestern Maine are
dominated by evergreen and mixed forests, resulting in the individual Kappa statistics 0.56
for evergreen forest and 0.50 for mixed forest (Table 3). The simulated evergreen forest
(consisting of spruce-fir and white pine) in Vermont and New Hampshire is mainly distributed
in mountain areas such as in the Green Mountains and the White Mountains, consistent with
NLCD 2001 (Fig. 2). In southwestern New Hampshire, the model simulates some evergreen
forests like white pine-cedar, also corresponding well to evergreen forest classified in the NLCD
2001.

Our model is also able to accurately simulate deciduous forests for New England. For
example, the NLCD 2001 shows that Connecticut and Rhode Island are dominated by
deciduous forests, coinciding well with modeled oaks in these two states (Fig. 2). Visually,
the modeled evergreen, deciduous andmixed forests in eastern, mid and westernMassachusetts

Fig. 2 Comparison of three forest types derived from model simulations and aggregated into deciduous,
evergreen, or mixed forest types classifications for comparison with NLCD 2001

Climatic Change



are similar to their counterparts in the NLCD 2001 except for southeastern Massachusetts,
where the model simulates deciduous forest while the NLCD 2001 classified vegetation mainly
as evergreen (Fig. 2a,b). In actuality, southeastern Massachusetts is dominated by a mixture of
pitch pine and oaks. For regions to the west of the Green Mountains of Vermont, the modeled
deciduous forest, which consists of oaks, maple-beech-basswood and aspen-birch (Fig. 1b), is
consistent with the deciduous forest classified in the NLCD 2001. The relatively high individual
kappa (0.55) and fuzzy kappa (0.52) justify the model’s performance in simulating deciduous
forest for New England (Table 3). Other evaluations based on modeled LAI (Appendix S4),
forest NPP and biomass (Tang et al. 2010) also justified the model’s performance in simulating
vegetation for New England.

3.2 The potential transient dynamics of forest distributional change

Our simulations indicate that deciduous forests have already shifted northward in response to
historical climate change and the trend in atmospheric CO2 concentration (Fig. 3a). Maple-
beech-basswood, oaks and aspen-birch were simulated to shift northward at a rate of 401 myr-1

(R200.93) (averaged over all scenarios and hereafter), 333 myr−1 (R200.90) and 784 myr−1

(R200.90) over the years 1901–2006, with continuing northward shifts at an increased rate of
1567 myr−1 (R200.99), 1,392 myr−1 (R200.99) and 1,612 myr−1 (R200.99) over the years
2007–2099. For evergreen forest, the distribution of spruce-fir was relatively stable before 2006
but shifted southward to regions of higher elevation in our study area at a rate of 228 myr−1

(R200.84) after 2007. In contrast, the distribution of red-jack pine shifted southward at a rate of
356 myr−1 (R200.82) over the years 1901–2006 while white pine-cedar shifted northward at a
rate of 301 myr−1 (R200.86) in this period (Fig. 3a). As of 2007, the latitudinal distribution of
these two evergreen forests reversed: thewhite pine-cedar shifted southward at a rate of 535myr−1

(R200.90) but red-jack pine shifted northward at a rate of 129 myr−1 (R200.52). The contraction
of spruce-fir and white pine-cedar to higher elevations such as Green Mountain in Vermont and
to the cooler region centered on the corner of northern NewHampshire and northwesternMaine
resulted in the southward shift of these forests (Fig. 4).

Our simulations suggest that historical climate change has shifted all forests to higher
elevations and that projected future climate change will continue this trend (Fig. 3b). Maple-
beech-basswood, oaks and aspen-birch were simulated to move upslope at a rate of around

Table 3 Statistics used in the accuracy assessment of modeled vegetation for New England

Forest cover types

Statistics Evergreen Deciduous Mixed

Model’s accuracya 76% 75% 64%

Producer’s accuracyb 56% 70% 79%

Overall accuracy 70%

Individual Kappa 0.56 0.55 0.50

Overall Kappa 0.54

Individual Fuzzy Kappa 0.56 0.52 0.50

Overall Fuzzy Kappa 0.54

a The model’s accuracy is the probability that predicted vegetation corresponds to the classification in the
NLCD 2001 data set
b The producer’s accuracy is the probability that the number of grid cells classified as a forest cover type in the
NLCD 2001 data will be correctly simulated by the model
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0.2 myr−1 (R200.94), 0.3 myr−1 (R200.95) and 0.5 myr−1 (R200.93) over the years 1901–
2006, and this trend continued at an increased rate of around 0.5 myr−1 (R200.91), 0.9 myr−1

(R200.97) and 1.6 myr−1 (R200.99) over the years 2007–2099, respectively. However, the

Fig. 3 Projected historic (1901–2006) and future (2007–2099) dynamics of eight forest cover types in New
England. The values in all panels for each forest cover type (or dominant PFT) are averaged values based on
all grid cells for each specified cover type and across nine climate change scenarios, including simulations
based on historical climatic conditions

Fig. 4 The modeled spatial distribution of eight forest cover types for New England in 2071–2099 under
SRES B1, A1B and A2 scenarios. The forest cover type in a grid cell was defined as the mode of forest cover
types based on the highest leaf area index under three GCM runs
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elevational increases in evergreen forests, especially for spruce-fir and white pine-cedar, resulted
mainly from losses of these communities at low elevations rather than general shifts to high
elevations, as was the case for deciduous forests, which are usually found at lower elevations in
our study region. Evergreen forests mostly occupy the highest elevations in our region and so are
unable to migrate to higher elevations, but rather are lost at lower elevations (Fig. 3b).

Our model indicated that historical climate change has reduced the areal extent of
evergreen forests in New England and future projected climate change is expected to result
in further losses of evergreen forests (Fig. 3c). The simulated extent of spruce-fir, white pine-
cedar and red-jack pine decreased at an annual rate of around 0.2% (R200.74), 0.3% (R20
0.84) and 1.6% (R200.93) over the years 1901–2006 and continued to decrease at an annual
rate of 0.9% (R200.99), 0.9% (R200.99) and 0.7% (R200.88) over the years 2007–2099.
We estimate that oaks increased in area by 0.4% per year (R200.92) before 2006 but will
increase by 2.1% per year (R200.98) after 2006. Compared to other forests, aspen-birch was
modeled to increase at an annual rate of 0.5% (R200.79) before 2050 but decrease at an
annual rate of 1.7% (R200.98) after 2051. Maple-beech-basswood were simulated to
increase at an annual rate of 0.4% (R200.88) before 1970 but to decrease at an annual rate
of 0.4% (R200.97) after 1970.

3.3 The projected forests distribution in the end of this century

Projected future climate change will continue to result in compositional and range shifts.
Compared to the baseline simulation, our model indicated that maple-beech-basswood,
spruce-fir, white pine-cedar, red pine-jack pine will decrease by 82%, 80%, 98% and 44% by
2085 respectively while oaks are projected to increase by 166% (Table 4). Two less common
forest types in New England, namely yellow-birch (597 out of 224 588 grid cells in baseline
simulation) and hickories (22 cells in baseline simulation) are projected to increase the most in
percentage terms due to their small size in the baseline period (Table 4). Overall, 60% of New
England is projected to be dominated by oaks while northern New England is modeled to be
dominated by aspen-birch by the end of the 21st century (Fig. 4). Yellow-birch, hickories and
maple-beech-basswood will co-occur in a transition zone between southerly oaks and northerly
aspen-birch and evergreen forests, especially in mid or central uplands of New England (Fig. 4).

3.4 Conversions between forest types

Our simulations indicated that two types of replacements or conversions might occur in New
England. First, the southerly-distributed species (e.g. oaks) tend to always replace northerly
distributed species (e.g. white pine and aspen-birch) under regional warming and elevated
CO2 concentration (Tables 4 and 5). Second, species with similar bioclimatic ranges might
exhibit complex climate change-induced conversion patterns. For example, white pine-cedar
was modeled to decrease by 80%, of which 20% was converted to aspen-birch (Table 4). In
fact, however, about 3938 grid cells dominated by aspen-birch in 1985 were replaced by
white-pine cedar in 2085. At the same time, about 15875 cells originally dominated by white
pine-cedar in 1985 were converted to aspen-birch in 2085 (Table 5). A similar phenomenon
governed the simulated shift between aspen-birch and maple-beech-basswood (Table 5).

3.5 Effects of climate change and CO2 enrichment on LAI

When averaged across all cells, temperature increases alone tended to decrease LAI in
forests (Fig. 5a–h). Precipitation increases alone tended to enhance LAI in most forests
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(Fig. 5j–p), except for spruce-fir that dominate at highest elevations where annual precipi-
tation is high (Fig. 5i). Our simulation also indicated that increase in CO2 concentration
alone appeared to enhance LAI in all forests. The simulated LAI increase in spruce-fir, white
pine-cedar and red-jack pine under high CO2 concentration is greater than that in maple-
beech-basswood (Fig. 6a). In addition, compared to forests of similar bioclimatic limits like
spruce-fir and maple-beech-basswood, aspen-birch appears to benefit more from regional
warming and elevated-CO2 condition (Fig. 6a). Among all forests, LAI increases in oaks and
hickories are the greatest as temperature rises (Fig. 6a).

Table 4 Internal conversions for eight forest cover types from 1985 to 2085

1985 2085 Forest cover type internal conversion contribution (%)

Forest cover types Cells Δ (%)a SF1 PC2 JP3 MBB4 Oaks BE5 Hick6 AB7

1. Spruce-fir 33319 −82 −10 1 −4 −10 −3 −3 −53
2. White pine-cedar 58910 −80 5 2 −17 −40 −2 −8 −20
3. Red-jack pine 6111 −98 −4 −14 −3 −11 −2 −4 −60
4. Maple-beech-basswood 37321 −44 3 27 −80 −5 11

5. Oaks 47803 166 7 49 2 63 1 44

6. Yellow birch-elm 597 454 163 169 25 16 −94 −3 179

7. Hickories 22 53473 3735 20883 984 9034 347 86 18404

8. Aspen-birch 40505 7 43 30 9 −10 −52 −3 −10

Data shown here are averaged values based on simulations for the period 1971–2000 (refer to as 1985) and for
the period 2071–2099 (refer to as 2085)
a Positive value means “gain from” and negative value means “loss to”. SF1 – Spruce-fir; PC2 – White pine-
cedar; JP3 – Red-jack pine; MBB4 – Maple-beech-basswood; BE5 – Yellow birch-elm; Hicks6 – Hickories;
AB7 – Aspen-birch

Table 5 Transition matrix of modeled cells of each forest cover type between 1985 and 2085

Forest cover types under the baseline condition (1985)

Forest cover types in 2085 SF1 PC2 JP3 MBB4 Oaks BE5 Hickories AB6

1. Spruce-fir 5674 71 359 27

2. White pine-cedar 3238 4028 862 31 3 3938

3. Red-jack pine 116 21

4. Maple-beech-basswood 1247 9949 158 4849 13 16 4520

5. Oaks 3454 23406 697 30045 47687 560 21 21238

6. Yellow birch-elm 970 1008 147 114 1067

7. Hickories 817 4571 215 1977 97 18 4028

8. Aspen-birch 17799 15875 3649 303 5683

Data shown here are averaged values based on simulations for the period 1971–2000 (refer to as 1985) and for
the period 2071–2099 (refer to as 2085). SF1 – Spruce-fir; PC2 – White pine-cedar; JP3 – Red-jack pine;
MBB4 – Maple-beech-basswood; BE5 – Yellow birch-elm; AB6 – Aspen-birch. The values in each column
indicate the number of cells occupied by a forest cover type under the baseline (1985) simulation were either
converted to a different type or kept same (diagonal numbers) under the future (2085) simulation as listed in
each row
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3.6 Comparison of dynamically and statically modeled future changes

Our modeled future changes in forest distribution between the period 2071–2099 and the
period 1961–1990 under nine CCSs are generally consistent with those modeled using an
equilibrium model (Tang and Beckage 2010) (Table 6). For example, northern deciduous
hardwoods are projected to shift northward by 1.1 latitudinal degrees and to be reduced in
area by 17% and 19% relative to their baseline simulations under the dynamic and static
simulations, respectively. Nevertheless, the upslope movement of boreal conifer forest
(150 m) under the dynamic simulation is 410 m lower than that under the equilibrium
simulation (560 m). Similarly, the northward shift of mixed oak-hickory forest (1.4 latitu-
dinal degree) under the dynamic simulation is 0.6° less than that (2.0 latitudinal degree)
under the static simulation (Table 6).

Fig. 5 Temperature increases alone a–h decrease annual mean LAI in all forests while precipitation increases
alone j–p enhance annual mean LAI in most forests, except for spruce-fir i that dominates at highest elevations
where annual precipitation is high. For plotting, all variables were normalized as Z-score that is derived by
subtracting the population mean from an individual and then dividing the difference by the population
standard deviation
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4 Discussion

4.1 The difference between modeled and the NLCD forest distribution

Although LPJ-GUESS is able to simulate the current vegetation distribution in New
England, major differences between our modeled forests and those classified in the NLCD
2001 still occur in northeastern Vermont, northern New Hampshire and northwestern corner
of Maine (Fig. 2). Our modeled evergreen forest is broader and spatially more continuous
than is indicated by NLCD 2001. Disregarding limitations in the accuracy of the NCLD
2001 in representing the distribution of forest types in these regions, the differences may
result from: (i) the simple classification of our soil texture data used to run our model
(Appendix S2) (e.g., soil texture determines soil water holding capacity and thus affects the

Fig. 6 a Increase in atmospheric CO2 concentration from SERS B1 (lower) to A1B (higher) storyline enhances
annual mean LAI in eight forest cover types, as illustrated by the differences in annual mean LAI between two
simulations under the same climate driving scenario (i.e., HadCM3 A1B) but with different CO2 concentrations
scenarios (SERS B1 vs. SERS A1B). b Our simulation with CO2 increases with other climatic variables kept
constant at 30-year’ (1971–2000) mean conditions indicated that increases in atmospheric CO2 concentration is
responsible for projected dominance of northern New England by aspen-birch in the late 21st century

Table 6 Comparison of LPJ-GUESS (dynamic) to BIOME4 (equilibrium) projected future changes in forest
distribution between the time periods 2071–2099 and 1961–1990

Boreal conifer forest Northern deciduous hardwoods Mixed oak-hickory forest

Average changes in LPJ-GUESS BIOME4 LPJ-GUESS BIOME4 LPJ-GUESS BIOME4

Latitude (˚)a 0.8 1.0 1.1 1.1 1.4 2.0

Altitude (m)b 149 556 125 85 80 76

Area extent (%) −82 −91 −17 −19 209 282

a For boreal conifer forest and northern deciduous hardwoods, the latitude refers to their southern boundary.
For mixed oak hickory forest, it refers to the northern boundary
b Altitude is averaged value for all simulated cells. Because BIOME4 simulates more losses of boreal conifer
forest and northern deciduous hardwoods, the contraction of boreal conifers and northern hardwoods to high
elevation area result in the big difference in averaged elevation changes. The LPJ-GUESS modeled eight
forest cover types were reclassified as three types, i.e. boreal conifers, northern deciduous hardwoods and
mixed oak-hickories, for comparison
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uptake of water by plants); (ii) the exclusion of topographic effects (e.g. aspect) on
vegetation distribution (e.g., shade-intolerant species adapt better in south-facing slopes of
mountains); (iii) the inadequacy of climate data in capturing the spatial climatic variation at
finer scales, which affects species occurrence along elevational gradients; and (iv) the
uncertainties in model parameters (e.g., the drought tolerance of species affects its sapling
establishment and different combination of parameters can lead to dominance of one
tolerance class, especially for deciduous forests (Wramneby et al. 2008)). Nevertheless,
we were able to model a transition zone (i.e. the mixed forest) between evergreen and
deciduous forest that does not appear to be present in NLCD 2001 but is known to occur in
some regions like in the Green Mountains (Fig. 2). This gives some indication that our
simulation might better reflect the nature of forest compositional change over space than the
NLCD 2001.

4.2 Modeled potential historical and future vegetation dynamics

The range limits of species in LPJ-GUESS are primarily controlled by temperature indices
for sapling establishment, such as the minimum temperature in coldest month, the maximum
temperature in warmest month and the growing degree days (> 5°C) (Table 2). In our
simulations, deciduous forests shifted northward in response to temperature increases
observed in the 20th century and projected increase for the 21st century (Appendix S3). In
contrast, three evergreen forests, i.e. spruce-fir, white pine-cedar and red pine-jack pine,
were projected to shift southward in the late 21st century (Fig. 3a), because of losses of these
forests at lower elevations in the higher latitudes in our study region (Fig. 3a vs. Fig. 4).
Overall, the modeled past (before 2006) migration rates of 330myr−1 for oaks and 400myr−1 for
maple-beech-basswood exceed observed species shifts in similar forests, which range from <100
(McLachlan et al. 2005) to 250 myr−1 (Davis 1989). Nevertheless, historical evidence indicates
that the mean center locations of 71 rare plants in New England shifted northward by an average
of 68 km between the periods 1820–1975 and 1976–2004 (Farnsworth and Ogurcak 2006),
approximating a rate of 370 myr−1 in the period 1820–2004. The modeled future migration rate
of 1590 myr−1 for northern deciduous forests and 1390 myr−1 for oaks is consistent with earlier
studies for New England (Tang and Beckage 2010) as well as other studies (e.g. Jay et al. 2002,
migration rate in high latitude >1,000 myr−1). We caution, however, that our model simulations
do not consider dispersal limitations.

The average elevation increase under warming and elevated-CO2 concentration is driven by
two distributional shifts, alone or in combination, namely the loss of species at low elevations
and the upslope shift of species. Because spruce-fir and red pine-jack pine are dominant mainly
at the highest elevations and are modeled to decrease in the future (Fig. 3c), their elevation
increases result primarily from their losses at low elevations. For example, compared to the
baseline simulation (Appendix S5), spruce-fir is modeled to decrease by 82% by the period
2071–2099 (referred to as 2085 and hereafter) with 53% of these losses replaced by aspen-birch
that occurs at lower elevations (Table 4 and Fig. 3b).

The elevation increases in northern deciduous hardwoods result from both warming-
induced upslope movement (e.g. Beckage et al. 2008) and losses of these communities at
low elevations. For example, maple-beech-basswood is projected to decrease by 44% by
2085, stemming primarily from the combined effects of an 80% loss to oaks at lower
elevations and 27% gain from white-pine cedar at higher elevations (Table 4 and Fig. 3b).
The projected elevational increases in oaks and hickories result solely from their upslope
movement, in part, because they never appear to be displaced by other forest types in our
simulations (Table 4). By 2085, maple-beech-basswood and oaks were simulated to move
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upslope by 85 m and 72 m, close to previous estimates of 76 m for both forests (Tang and
Beckage 2010). The losses of spruce-fir at low elevations and the shift of white pine to
higher elevations results in the uplands (> 450 m) being dominated by white pine (12371
cells compared to 6,000 cells for spruce-fir in 2085) in the late 21st century as observed
historically under warming condition (e.g. Oswald et al. 2009).

4.3 The complexity of modeled forest cover conversions

Climate change and elevated CO2 concentration induce forest conversion through effects on
species competition for light, water and nutrients. The southerly-distributed species (e.g.
oaks) tend to always replace northerly-distributed species (e.g. white pine and aspen-birch)
under regional warming and elevated CO2 concentration (Tables 4 and 5) because they have
relatively larger specific leaf area and are more drought tolerant (Table 2). However, the
northward and upslope shifts of forest under regional warming are not the only plausible
aspects of climate change-induced vegetation dynamics. Counter-intuitive shifts in the
opposing direction to isotherm migration are also possible or even likely to occur as
indicated by the reversed conversions in our simulations. Such reversed conversions may
be attributed to differences in (i) the physiological traits of species and (ii) the response to
regional warming and elevated CO2 concentration. For example, aspen-birch is compara-
tively more drought tolerant than white-pine cedar. If regional warming decreases soil
moisture in a location, aspen-birch will adapt better to the new condition than white-pine
cedar, and vice versa. Likewise, even though the southerly-distributed white-pine cedar
tends to generally replace the northerly-distributed aspen-birch, the latter is modeled to gain
more (e.g., the higher LAI increase) from elevated CO2 concentrations and regional warming
in the future (see discussion below).

4.4 Effects of climate change and CO2 enrichment on vegetation dynamic

Historical evidence indicates that vegetation dynamics in New England are most strongly
driven by climate (Hall et al. 2002; Foster et al. 2002, 2006). Although recent studies (e.g.
Shuman et al. 2004) have argued that temperature trends do not explain all aspects of
vegetation dynamics in New England, changes in both precipitation (or soil moisture
balance) and CO2 concentration play an important role in shifting forest growth and
composition in New England (Tang and Beckage 2010). In reality, variation in temperature,
precipitation, and CO2 concentration are likely to jointly exert control on forest dynamics in
New England according to our simulations and relevant studies (e.g., Tang et al. 2010). For
instance, multiple regression analyses showed that the variations of annual LAI (averaged
across all grid cells) in almost all forests were positively and linearly correlated with the
variations of both temperature and precipitation in New England (Appendix S6). At the cell
level, however, the effects of climate change on vegetation such as LAI are more complex
and both positive and negative effects can occur depending on the climate change scenario
(e.g., Bachelet et al. 2001).

Elevated CO2 concentration stimulates plant growth directly through enhancement of the
carbon-fixation efficiency and indirectly through improvements in the water use efficiency,
as confirmed in field studies (e.g. Ainsworth and Long 2005; Hickler et al. 2008). The
difference in CO2-induced increase in LAI and productivity has implications for future forest
composition and distribution in New England. For example, the larger LAI increases in
evergreen forests (Fig. 6a) imply that boreal conifers (lower drought tolerance, see Table 2)
may gain more from the direct effects of elevated CO2 concentration than does maple-beech-
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basswood (higher drought tolerance, see Table 2). Tang and Beckage (2010) argued that
elevated CO2 concentration has potential to reduce the losses of boreal conifers in New
England.

Our modeled continuous increase in the area of aspen-birch to 2050 (Fig. 3c) results in
northern New England being dominated by aspen-birch in the late 21st century (Fig. 4). A
further computational experiment using constant climate but variable CO2 concentration
indicated that CO2 increases are responsible for the modeled areal increase of aspen-birch in
northern New England (Fig. 6b). This is consistent with a recent study (Cole et al. 2010)
found that quaking aspen in Wisconsin has grown much faster over the past five decades
(1958–2003) than in the past due to elevated CO2 concentration. An earlier study (Voelker et
al. 2006) indicated that historical CO2 growth enhancement declines with age in Quercus (e.g.
oaks) and Pinus (e.g. pines) over the years 1850–2000. The highest LAI increases in oaks and
hickories indicate that elevated-CO2 concentration along with warming might accelerate the
replacement of northern hardwoods by oaks and hickories. Such effects become more discern-
ible after 2040 with increasing CO2 concentration and corresponding shifts in climate (Fig. 6).

4.5 Model limitations

Although model validation against the NLCD 2001 justified the model’s application to New
England, the accuracy of modeled historical and future vegetation dynamics for New
England is subject to at least four major sources of uncertainty. The first of these is the
uncertainty in future climate change scenarios derived from runs of the three GCMs
referenced in this study. The GCM data are originally coarse-grained (> 1.8˚ by 1.8˚) with
respect to New England and might not capture well the spatial variation of future climatic
condition across the region, which in turn affects modeled forest composition and distribu-
tion at 30-arc second resolution (Tang and Beckage 2010). The second source of uncertainty
is the inclusion of only mean monthly temperature, rainfall and incoming solar radiation in
driving shifts in forest composition and distribution as other climate-related factors are likely
to be important. Climate change can alter the frequency and severity of forest fire, disease
and pests, and the patterns of extreme weather events such as droughts and windstorms.
These factors can result in severe changes in forest composition and distribution in New
England (Evans and Perschel 2009). Thirdly, species dispersal limitations are not accounted
for in the simulations. Dispersal limits can cause species ranges to lag behind modeled
changes and thus our simulation might overestimate the rate of future shifts in forest
distribution and the conversions occurring among forests. Finally, unmodeled human land
use decisions, affecting land cover patterns as well as forest management, have historically
greatly affected vegetation patterns and trends in New England (Foster et al. 1998; Fuller et
al. 1998).

Nevertheless, we suspect that our simulated forest dynamics are likely to be a better
reflection of the vegetation-climate dynamics in New England than those simulated assum-
ing a climate-vegetation equilibrium. The overall consistency of modeled northward shifts of
boreal conifer forest and northern deciduous hardwoods between this study using a dynamic
vegetation model and a previous study that used an equilibrium model for the same study
area (Table 6) may be due, in part, to the regional nature of the study, which limits the
potential shifts of forest types. Likewise, the similarity of modeled upslope movement of
mixed oak-hickory forest may be driven by both the large area of this forest type in our study
region and the relatively low elevational position of this forest type. The discrepancy in
modeled upslope movement of boreal conifer forest and northward shift of mixed oak-
hickory forest is likely more reflective of the differences in the performance of these two
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model types. Since LPJ-GUESS accounts for the temporal lags resulting from succession,
the removal of PFTs with negative increments in carbon balance, and transient dynamics of
vegetation under changing climate (Koca et al. 2006), the difference in projected upslope
movement of boreal conifer forest, for example, is 400 to 500 m less using the dynamic
model compared to the equilibrium model (Table 6), suggesting that future climate change
might not shift vegetation distribution in New England as rapidly as predicted by statistical
or equilibrium models.

Finally, we caution that predictions of how ecological systems are likely to respond to
future climate change over decadal time scales may not be possible (Beckage et al. 2011).
This is because of the great potential for unexpected interactions between species, non-
linearities, and unforeseen events. Our simulation results are projections of what might
happen contingent on underlying model assumptions inherent both in the model and in the
environmental drivers. Nevertheless, such projections are useful for exploring the potential
ecological changes that might occur in response to future climate change.

5 Conclusions

(i) Historical climate change and increases in CO2 concentration have shifted deciduous
forests northward and future projected climate change is modeled to continue to shift
these forests further northward at an increasing rate. In contrast, spruce-fir and white
pine-cedar are projected to contract to mountain ranges and to cooler interior areas in
our study region, resulting in southward range shifts. Historical climate change
likewise shifted all forests to higher elevations and future projected climate change
will continue and accelerate this trend.

(ii) Historical climate change is modeled to have already reduced the extent of evergreen
forests in New England and projected future climate change will cause further losses
of evergreen forests, ranging from 80% for white pine-cedar to 98% for red-jack pine.
For deciduous forests, our simulations indicate that oaks have increased in area at an
annual rate of 0.4% before 2006 and are predicted to increase in area at an accelerated
rate of 2.1% after 2006. Maple-beech-basswood increased at a rate of 0.4% before
1970 and decreased at a rate of 0.4% after 1970. By the end of 21st century, 60% of
New England is projected to be dominated by oaks while northern New England is
simulated to be dominated by aspen-birch. In mid and central New England, maple-
beech-basswood, yellow birch-elm and hickories co-occur and form dominant forest
cover types.

(iii) Precipitation increase alone enhances LAI in most forests while temperature increase
alone reduces LAI in all forests in our model. Elevated concentrations of atmospheric
CO2 stimulate forest growth as suggested by the LAI increases in all forest types, but
disproportionately affect forest types: Evergreen forests have a greater response to
increasing CO2 than maple-beech-basswood but a smaller response than oaks and
hickories. These differential responses indicate that increase in CO2 concentration
along with rising temperatures hinders the replacement of evergreen forests by
northern deciduous hardwoods but accelerates the replacement of northern deciduous
hardwoods and evergreens by oaks and hickories.

(iv) Our initial comparison with an equilibrial process-based model suggests that a dy-
namic non-equilibrial model that accounts for the role of interactions between species,
including species succession, results in different spatial and temporal dynamics of
forest landscapes. The resultant simulations may better reflect the vegetation dynamics
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in response to changing climate in our region. We recommend that dynamic vegetation
models be used as another tool, along with equilibrial vegetation models, for under-
standing the potential impacts of climate change on forested ecosystems, while
recognizing that the lack of explicit dispersal in these models represents an area for
continued improvement in model projections.

Acknowledgements This study was supported by the US Department of Energy’s Office of Science (BER)
through the Northeastern Regional Center of the National Institute for Climatic Change Research. We
appreciate the Vermont Advanced Computing Center for providing high-performance clusters for our model
simulations. We thank Robert Devins and Chris Ellingwood for their technical help in this study.

References

Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A
meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising
CO2. New Phytol 165:351–372

Bachelet D, Neilson RP, Lenihan JM, Drapek RJ (2001) Climate change effects on vegetation distribution and
carbon budget in the United States. Ecosystems 4:164–85

Beckage B, Osborne B, Gavin DG, Pucko C, Siccama T, Perkins T (2008) A rapid upward shift of a forest
ecotone during 40 years of warming in the Green Mountains of Vermont. Proc Natl Acad Sci 105:4197–
4202

Beckage B, Gross L, Kauffman S (2011) The limits to prediction in ecological systems. Ecosphere. In press.
Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc

74:829–836
Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46
Cole CT, Anderson JE, Lindroth RL, Waller DM (2010) Rising concentrations of atmospheric CO2 have

increased growth in natural stands of quaking aspen. Glob Change Biol 10:2186–2197
Daly C, Taylor GH, Gibson WP, Parzybok TW, Johnson GL, Pasteris P (2000) High-quality spatial climate

data sets for the United States and beyond. Trans Am Soc Agric Eng 43:1957–1962
Daly C, Gibson WP, Taylor GH, Gibson WP, Parzybok TW, Johnson GL, Pasteris P (2002) A knowledge-

based approach to the statistical mapping of climate. Climate Res 22:99–113
Davis MB (1989) Lags in vegetation response to greenhouse warming. Climatic Change 15:75–82
Davis MB, Shaw RG (2001) Range shifts and adaptive responses to quaternary climate change. Science

292:673–679
Evans AM, Perschel R (2009) A review of forestry mitigation and adaptation strategies in the Northeast US.

Climatic Change 96:167–183
FAO (1991) The digitized soil map of the world (release 1.0). Vol. 67/1, Food and Agriculture Organization of

the United Nations.
Farnsworth EJ, Ogurcak DE (2006) Biogeography and decline of rare plants in New England: historical

evidence and contemporary monitoring. Ecol Appl 16:1327–1337
Farr TG, Kobrick M (2000) Shuttle Radar Topography Mission produces a wealth of data. Am Geophys

Union Eos 81:583–585
Foster DR, Motzkin G, Slater B (1998) Land-use history as long-term broad-scale disturbance: regional forest

dynamics in central New England. Ecosystems 1:96–119
Foster DR, Clayden S, Orwig DA, Hall B, Barry S (2002) Oak, chestnut and fire: climatic and cultural

controls of long-term forest dynamics in New England, USA. J Biogeogr 29:1359–1379
Foster DR, Oswald WW, Faison EK, Doughty ED, Hansen BCS (2006) A climatic driver for abrupt mid-

Holocene vegetation dynamics and the hemlock decline in New England. Ecology 87:2959–2966
Fuller TL, Foster DR, McLachlan JS, Drake N (1998) Impact of human activity on regional forest compo-

sition and dynamics in central New England. Ecosystems 1:76–95
Gordon C, Cooper C, Senior CA, Banks HT, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The

simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled
model without flux adjustments. Clim Dynam 16:147–168

Hagen-Zanker A, Straatman B, Uljee I (2005) Further developments of a fuzzy set map comparison approach.
Int J Geogr Inf Sci 19:769–785

Climatic Change



Hall B, Motzkin G, Foster DR, Syfert M, Burk J (2002) Three hundred years of forest and land-use change in
Massachusetts, USA. J Biogeogr 29:1319–1335

Hickler T, Smith B, Sykes MT, Davis MB, Sugita S, Walker K (2004) Using a generalized vegetation model to
simulate vegetation dynamics in northeastern USA. Ecology 85:519–530

Hickler T, Smith B, Prentice IC, Mjofors K, Miller P, Arneth A, Sykes MT (2008) CO2 fertilization in temperate
FACE experiments not representative of boreal and tropical forests. Glob Change Biol 14:1531–1542

Hooker TD, Compton JE (2003) Forest ecosystem carbon and nitrogen accumulation during the first century
after agricultural abandonment. Ecol App 13:299–313

IPCC (2007) Summary for policymakers. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson
CE (eds) Climate Change 2007: Impacts, adaptation and vulnerability. Contribution of Working Group II
to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University
Press, Cambridge, pp 7–22

Iverson LR, Prasad AM (2001) Potential changes in tree species richness and forest community types
following climate change. Ecosystems 4:186–199

Jay RM, Adam M, Ronald PN, Michael G (2002) Estimated migration rates under scenarios of global climate
change. J Biogeogr 29:835–849

Jungclaus JH, Botzet M, Haak H, Keenlyside N, Luo JJ, Latif M,Marotzke J, Mikolajewicz U, Roeckner E (2005)
Ocean circulation and tropical variability in the AOGCM ECHAM5/MPI-OM. J Climate 19:3952–3972

Kelly PM, White JM (1993) Preprocessing remotely sensed data for efficient analysis and classification,
applications of artificial intelligence 1993: knowledge-based systems in aerospace and industry. Proc
SPIE 1993:24–30

Kim SJ, Flato GM, Boer GJ, Boer GJ (2002) A coupled climate model simulation of the Last Glacial
Maximum, Part 1: transient multi-decadal response. Clim Dynam 19:515–537

Kim SJ, Flato GM, Boer GJ (2003) A coupled climate model simulation of the Last Glacial Maximum, Part 2:
approach to equilibrium. Clim Dynam 20:635–661

Koca D, Smith B, Sykes MT (2006) Modelling regional climate change effects on potential natural ecosys-
tems in Sweden. Climatic Change 78:381–406

Landis JR, Koch GG (1977) Application of hierarchical Kappa-type statistics in assessment of majority
agreement among multiple observers. Biometrics 33:363–374

McKenny DW, Pedlar JH, Lawrence K, Campbell K, Hutchinson MF (2007) Potential impacts of climate
change on the distribution of North American trees. BioScience 57:939–948

McLachlan JS, Clark JS, Manos PS (2005) Molecular indicators of tree migration capacity under rapid climate
change. Ecology 86:2088–2098

Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observa-
tions and associated high-resolution grids. Int J Climatol 25:693–712

Monserud RA, Leemans R (1992) Comparing global vegetation maps with the Kappa statistic. Ecol Model
62:275–293

Morales P, Sykes MT, Prentice IC et al (2005) Comparing and evaluating process-based ecosystem model
predictions of carbon and water fluxes in major European forest biomes. Glob Change Biol 11:2211–2233

Oswald WW, Foster DR, Dought ED, Faison EK (2009) A record of Lateglacial and early Holocene
environmental and ecological change from southwestern Connecticut, USA. J Quaternary Sci 24:553–556

Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems.
Nature 421:37–42

Parshall T, Foster DR, Faison E, Macdonald D, Hansen BCS (2003) Long-term history of vegetation and fire
in pitch pine-oak forests on Cape Cod, Massachusetts. Ecology 84:736–748

Pope V, Gallani ML, Rowntree PR, Stratton RA (2000) The impact of new physical parameterizations in the
Hadley Centre climate model: HadAM3. Clim Dynam 16:123–146

Prentice IC, Solomon AM (1990) Vegetation models and global change. In: Bradley RS (ed) Global changes
of the past. UCAR/Office for Interdisciplinary Earth Studies, Boulder, pp 365–83

Rosen PA, Hensley S, Joughin IR, Li FK, Madsen SN, Rodriguez E, Goldstein RM (2000) Synthetic aperture
radar interferometry. Proc IEEE 88:333–382

Schlesinger ME, Malyshev S (2001) Changes in near-surface temperature and sea level for the Post-SRES
CO2-stabilization scenarios. Integr Assess 2:95–110

Shuman B, Newby P, Huang Y, Thompson WEBB III (2004) Evidence for the close climatic control of New
England vegetation history. Ecology 85:1297–1310

Sitch S, Smith B, Prentice IC et al (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial
carbon cycling in the LPJ Dynamic Global Vegetation Model. Glob Change Biol 9:161–185

Smith B, Prentice IC, Sykes MT (2001) Representation of vegetation dynamics in the modeling of terrestrial
ecosystems: comparing two contrasting approaches within European climate space. Global Ecol Biogeo
10:621–637

Climatic Change



Tang G, Bartlein PJ (2008) Simulating the climatic effects on vegetation: approaches, issues and challenges.
Prog Phys Geog 32:543–556

Tang G, Beckage B (2010) Projecting the distribution of forests in New England in response to climate
change. Divers Distrib 16:144–158

Tang G, Shafer SL, Bartlein PJ, Holman (2009) Effects of experimental protocol on global vegetation model
accuracy: A comparison of simulated and observed vegetation patterns for Asia. Ecol Model 220:1481–1491

Tang G, Beckage B, Smith B, Miller PA (2010) Estimating potential forest NPP, biomass and their climatic
sensitivity in New England using a regional dynamic ecosystem model. Ecosphere 1:1–20 (Article 18)

Vogelmann JE, Sohl T, Campbell PV, Shaw DM (1998a) Regional land cover characterization using landsat
thematic mapper data and ancillary data sources. Environ Monit Assess 51:415–428

Vogelmann JE, Sohl T, Howard SM (1998b) Regional characterization of land cover using multiple sources of
data. Photogramm Eng Remote Sens 64:45–47

Withington JM, Reich PB, Oleksyn J, Eissenstat DM (2006) Comparisons of structure and life span in roots
and leaves among temperate trees. Ecol Monogr 76:381–397

Woodward FI, Beerling DJ (1997) The dynamics of vegetation change: health warnings for equilibrium
‘dodo’ models. Global Ecol Biogeogr 6:413–418

Woodward FI, Lomas MR (2004) Vegetation dynamics—simulating responses to climatic change. Biol Rev
79:643–70

Wramneby A, Smith B, Zaehle S, Sykes MT (2008) Parameter uncertainties in the modeling of vegetation
dynamics—Effects of on tree community structure and ecosystem functioning in European forest biomes.
Ecol Model 216:277–290

Climatic Change


	The potential transient dynamics of forests in New England under historical and projected future climate change
	Abstract
	Introduction
	Methods and materials
	The study region
	Model, PFT definition and parameterization
	Climate, soil and CO2 data
	Modeling protocol and validation

	Results
	Model validation
	The potential transient dynamics of forest distributional change
	The projected forests distribution in the end of this century
	Conversions between forest types
	Effects of climate change and CO2 enrichment on LAI
	Comparison of dynamically and statically modeled future changes

	Discussion
	The difference between modeled and the NLCD forest distribution
	Modeled potential historical and future vegetation dynamics
	The complexity of modeled forest cover conversions
	Effects of climate change and CO2 enrichment on vegetation dynamic
	Model limitations

	Conclusions
	References




